

Bleached Kraft Pulp Effluent Electrocoagulation: Energy consumption, sludge characterization & economic analysis Marc Michielsen^a, Eder Carlos Lopes Coimbra^b, Qian Zhou^a, Ann Honor Mounteer^b

^a Avans University of Applied Sciences
 ^b Civil Engineering Department- Federal University of Viçosa

INTRODUCTION

- The Kraft bleached pulp production industry is known for its high-water consumption. The intensive use of this resource is due to sequential manufacturing sectors, from wood chip preparation to bleached pulp production.
- The unit operation, bleaching, is mainly responsible for this high-water consumption and produces 2 types of (alkaline & Acid) wastewater that has to be treated before it can be discharged.
- This treatment can be done using electrocoagulation
- Electrocoagulation is done using 2 different electrode materials (Aluminium & Iron) and produces a form of sludge that might have interesting properties.
 The treatments of the 4 different conditions are done under optimal conditions that were validated by a previous study.

RESULTS AND DISCUSSION

Acid filtrated effluents

Alkaline filtrated effluents

Energy consumption per kg sludge & Energy consumption / heat value ratio

Conditions	Condition 1 Acid Treated & Aluminium electrode	Condition 2 Acid treated & Iron electrode	Units
Energy consumption / formed sludge	2.02	1.44	kW∙h∙kg-1
Formed sludge	0.00947	0.00659	kg
Heat value	1882	2344	kJ·kg-1
E/Hv Ratio	1.08	0.61	kW·h·kJ-1·1000-1
E/Hv Ratio (same sludge production)	1.08	0.43	kW·h·kJ-1·1000-1

Conditions	Condition 3 Acid Treated & Aluminium electrode	Condition 4 Acid treated & Iron electrode	Units
Energy consumption / formed sludge	3.34	2.62	kW∙h∙kg-1
Formed sludge	0.00967	0.00499	kg
Heat value	1138	2249	kJ·kg-1
E/Hv Ratio	3.19	1.25	kW·h·kJ-1·1000-1
E/Hv Ratio (same sludge production)	3.19	0.82	kW·h·kJ-1·1000-1

OBJECTIVES

the main objective of the study is to evaluate the energy consumption and the energy potential of the sludge generated in the treatment of two kraft pulp bleaching effluents, called acid and alkaline filtrates, by electrocoagulation, with aluminium and iron electrode under optimized conditions. For this, the energy consumption will be calculated in (kWh/kJ), this will be calculated using the heat values of the 4 different sludges. Sludges will be characterized by their physicochemical nature & settling behaviour. This study gives an insight into the possible use of a by-product in the processing of an effluent.

MATERIALS AND METHODS

General process of the project

Comparison Condition 1 & 2
Condition 1: ~40% more sludge production
Condition 2: ~150% more energy efficient

Comparison Condition 3 & 4
Condition 1: ~90% more sludge production
Condition 2: ~290% more energy efficient

Settling over a period of 2.5 hours

SEM-images & SVI-value's[24h]

	Sludge Condition 3 Sludge Condition	n 4
SVI	Conditions	SVI
78	Condition 1	78
	Acid Treated & Aluminium electrode	
39	Condition 2	39
	Acid treated & Iron electrode	
$nl \cdot g^{-1}$	<u>Unit</u>	ml∙g ⁻¹
EDAX &	& FTIR	

dge Condition I Sludge Condition	2
Conditions	SVI
Condition 1	78
Acid Treated & Aluminium electrode	
Condition 2	39
Acid treated & Iron electrode	
<u>Unit</u>	ml∙g ⁻¹
	-

Showed no difference in Functional groups in the 4 different conditions

Electrocoagulation & optimal conditions

Sludge characterization

Sludge settling over 2.5 hours

✤ FTIR